
CROWD-SOURCED HELP WITH EMERGENT KNOWLEDGE FOR 
OPTIMIZED FORMAL VERIFICATION (CHEKOFV) 

SRI INTERNATIONAL 

MARCH 2016 

FINAL TECHNICAL REPORT 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 

STINFO COPY 

AIR FORCE RESEARCH LABORATORY 
INFORMATION DIRECTORATE 

AFRL-RI-RS-TR-2016-060

� UNITED STATES AIR FORCE � ROME, NY 13441� AIR FORCE MATERIEL COMMAND



NOTICE AND SIGNATURE PAGE 

Using Government drawings, specifications, or other data included in this document for any purpose 
other than Government procurement does not in any way obligate the U.S. Government. The fact that 
the Government formulated or supplied the drawings, specifications, or other data does not license the 
holder or any other person or corporation;  or convey any rights or permission to manufacture, use, or 
sell any patented invention that  may relate to them.  

This report was cleared for public release by the Defense Advanced Research Projects Agency 
(DARPA) Public Release Center and is available to the general public, including foreign nationals. 
Copies may be obtained from the Defense Technical Information Center (DTIC) (http://www.dtic.mil).  

AFRL-RI-RS-TR-2016-060   HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN 
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT. 

FOR THE CHIEF ENGINEER: 

/ S /  / S / 
CARL R. THOMAS RICHARD MICHALAK 
Work Unit Manager Acting Technical Advisor 

Computing & Communications Division 
Information Directorate 

This report is published in the interest of scientific and technical information exchange, and its 
publication does not constitute the Government’s approval or disapproval of its ideas or findings. 



REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and 
maintaining the data needed, and completing and reviewing the collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of information, including 
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, 
Suite 1204, Arlington, VA 22202-4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of 
information if it does not display a currently valid OMB control number.   
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1. REPORT DATE (DD-MM-YYYY)

MAR 2016 
2. REPORT TYPE

FINAL TECHNICAL REPORT 
3. DATES COVERED (From - To)

JUL 2012 – OCT 2015 
4. TITLE AND SUBTITLE

CROWD-SOURCED HELP WITH EMERGENT KNOWLEDGE FOR 
OPTIMIZED FORMAL VERIFICATION (CHEKOFV) 

5a. CONTRACT NUMBER 
FA8750-12-C-0225 

5b. GRANT NUMBER 
N/A 

5c. PROGRAM ELEMENT NUMBER 
62303E 

6. AUTHOR(S)
John Murray, Jim Whitehead, Florent Kirchner 

5d. PROJECT NUMBER 
CSFV 

5e. TASK NUMBER 
SR 

5f. WORK UNIT NUMBER 
II 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

SRI International, 333 Ravenswood Ave, Menlo Park, CA  94025-3453��35,0(� 
University of California Santa Cruz, 1156 High St., Santa Cruz 95064 
French Commissariat a l’Energie Atomique, 91191 Gif Yvette Cedex, France 

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/RITA ��'$53$
525 Brooks Road ������ �����1RUWK�5DQGROSK�6W�
Rome NY 13441-4505 ����� �$UOLQJWRQ��9$�����������

10. SPONSOR/MONITOR'S ACRONYM(S)

AFRL/RI 
11. SPONSOR/MONITOR’S REPORT NUMBER

AFRL-RI-RS-TR-2016-060 
12. DISTRIBUTION AVAILABILITY STATEMENT

Approved for Public Release; Distribution Unlimited.  DARPA DISTAR CASE #  DISTAR 25646 
Date Cleared:  17 Feb 2016 
13. SUPPLEMENTARY NOTES

14. ABSTRACT

Formal Verification of Software is an expensive and time consuming task aimed at discovering and correcting software 
errors that lead to programming errors.  The Crowd-Sourced Formal Verification (CSFV) program was developed to 
explore utilizing games to prove correctness proofs for software.  Leveraging human pattern recognition skills, the CSFV 
games provide formal verification proofs a machine analyzing the code cannot.  The SRI team developed two games; 
Xylem; The Code of Plants, and Binary Fission to prove Crowd Sourced game play can improve Formal Verification 
effectiveness and reduce the cost to verify code. 

15. SUBJECT TERMS

Formal Software Verification, Crowd-Sourcing, Games, Cyber Security, Human-Machine Systems, Frama-C 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 

88 

18. NUMBER
OF PAGES 

19a. NAME OF RESPONSIBLE PERSON 
CARL R. THOMAS 

a. REPORT
U 

b. ABSTRACT
U 

c. THIS PAGE
U 

19b. TELEPHONE NUMBER (Include area code) 
N/A 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std. Z39.18



 i 

TABLE&OF&CONTENTS&

List&of&Figures&......................................................................................................................................................&iii!
List&of&Tables&..........................................................................................................................................................&v!
Preface&.....................................................................................................................................................................&1!
1. Summary&.........................................................................................................................................................&4
1.1! The!Problem!................................................................................................................................................................!4!
1.2! Chekofv!Workflow!....................................................................................................................................................!5!
1.3! The!Games!....................................................................................................................................................................!5!
1.4! Code!Analysis!and!Verification!Process!..........................................................................................................!6!

2. Introduction&..................................................................................................................................................&7
2.1! Background!..................................................................................................................................................................!7!
2.2! Analysis!of!Software!Verification!Techniques!..............................................................................................!8!
2.3! Frama%C!Verification!Framework!...................................................................................................................!10!
2.4! Abstract!Interpretation!and!Machine!Learning!........................................................................................!10!
2.5! Related!Work!on!Abstract!Interpretation!...................................................................................................!12!
2.6! Initial!Exploration!of!Game!Space!...................................................................................................................!13!
2.7! Preliminary!Game!Concepts!..............................................................................................................................!14!
2.8! Concept!Transition!to!Xylem:,The,Code,of,Plants!......................................................................................!18!

3. Methods,&Assumptions,&and&procedures&...........................................................................................&21
3.1! Overview!of!the!Chekofv!system!.....................................................................................................................!22!
3.2! BIND!Library!Analysis!..........................................................................................................................................!24!
3.3! Chekofv!Ranking!Subsystem!(CRS)!................................................................................................................!26!
3.4! Phase!One:!Xylem:!the!Code!of!Plants!............................................................................................................!27!
3.5! Phase!Two:!Citizen!Science!Games!.................................................................................................................!37!
3.6! Abstract!interpretation,!invariant!learning,!and!crowd[sourcing!....................................................!46!
3.7! Frama%C!Value!plug[in!.........................................................................................................................................!47!
3.8! Sample!concrete!states!........................................................................................................................................!47!
3.9! Fusy!plug[in!for!Frama%C!.....................................................................................................................................!49!
3.10! Invariant!learning!................................................................................................................................................!50!
3.11! Closing!the!loop!....................................................................................................................................................!51!
3.12! Analysis!Termination!........................................................................................................................................!55!
3.13! Sample!Plug[in!......................................................................................................................................................!55!
3.14! Plug[ins!for!CWE!progress!metrics!..............................................................................................................!56!

4. Results&and&Discussion&...........................................................................................................................&57
4.1! Case!Study!1:!OpenSSL!–!Heartbleed!Bug!....................................................................................................!57!
4.2! Case!Study!2:!BIND!–!CVE[2015[5477!..........................................................................................................!60!
4.3! BIND!Analysis!..........................................................................................................................................................!62!
4.4! Paparazzi!...................................................................................................................................................................!64!
4.5! Cardinal!of!the!state!space!metrics!.................................................................................................................!65!
4.6! Xylem!case!study!on!SV[COMP!Benchmarks!...............................................................................................!67!
4.9! Recent,Binary,Fission!Productivity!.................................................................................................................!71!

5. Conclusions&.................................................................................................................................................&73
5.1! Whole[program!analysis!in!context!...............................................................................................................!73!
5.2! Scoring!scheme!in!Xylem!.....................................................................................................................................!73!
5.3! Peer!review!in!Xylem!............................................................................................................................................!74!
5.4! Insights!on!Binary,Fission!evaluation!............................................................................................................!74!



ii 

5.5! Game!Features!for!Science!Tasks!....................................................................................................................!77!
5.6! Challenges!Involving!Research!Ethics!Oversight!.....................................................................................!78!

6. Recommendations&....................................................................................................................................&80
6.1! Citizen!Science!and!Binary,Fission!..................................................................................................................!80!
6.2! Future!Directions!for!Verification!using!Value!Analysis!.......................................................................!81!
6.3! New!Framework!for!Research!Ethics!............................................................................................................!82!
6.4! Educational!Games:!Project!Fibonacci!..........................................................................................................!83!

7. References&...................................................................................................................................................&85

8. Appendices&..................................................................................................................................................&87



iii 

LIST OF FIGURES 
Figure!1.!The!adventure!begins! 1!
Figure!2.!Xylem!credits! 3!
Figure!3.!BinaryFission!credits! 3!
Figure!4.!Nested!iterative!workflow!processes!for!Chekofv! 5!
Figure!5.!Chekofv!System!Architecture! 8!
Figure!6.!Predicted!Performance!for!the!Chekofv!System!!(C1!and!C2)!compared!to!other!verification!

9!
10!
15!
16!
16!
17!
17!
19!
21!
23!
26!
27!
28!
29!
30!
3ʹ!

34!
36!
39!
42!
43!
44!
44!
45!
46!
48!
50!
52!
54!
54!
58!
59!
60!
61!
61!
69!
71!
72!
72!
75!

techniques.!
Figure!7.!Overall!structure!of!Frama�ǦǦǦ!capabilities!and!plugǦǦǦins!
Figure!8.!Early!inspirations!for!Chekofv!game!design!
Figure!9.!Early!concept!mockups!for!Codebreaker/CyphrSeekr!
Figure!10.!Initial!CyphrSeekr!demonstration!
Figure!11.!Concept!for!collaborative/competitive!play!with!two!participants���!�
Figure!12.!Concept!for!Invariants,vs.,Zombies!
Figure!13.!Concept!sketch!during!early!exploration!of!plant!domain!as!a!theme��!�
Figure!14.!Introductory!screens!for!the!primary!Chekofv!Phase!One!and!Two!games!���
Figure!15.!Overall!Chekofv!conceptual!architecture!
Figure!16.!!Chekofv!Ranking!Subsystem!
Figure!17.!Expressive!diversity!in!plants!
Figure!18.!Fictional!personae!used!to!guide!early!Xylem!design!
Figure!19.!Supporting!introductory!narrative!for!Xylem!
Figure!20.!Narrative!art!assets!in!Xylem!
	������ʹͳǤ���������������������������������������������������������
	������ʹʹǤ�Presentation!of!results!scores!in!Xylem!
Figure!23.!Example!of!pattern!solution!for!game!instance!in!Web!version!of!Xylem���
	igure!24.!Miraflora!–!the!island!setting!for!Xylem!player's!explorations!
Figure!25.!Early!exploration!of!Safe,Passage!game!concepts!
Figure!26a.!Dance!of!the!Restless!Eagle!
Figure!26b.!The!Quest!of!the!Black!Opossum!
Figure!26c.!The!Oath!of!the!Burgundy!Amoeba!
Figure!27.!Motivating!players!by!acknowledging!their!achievements!
Figure!28.!TheͶͷ!Binary,Fission!player!interface!
Figure!29.!Abstract!interpretation!and!invariant!learning!in!Chekofv!
Figure!30.!Example!of!an!abstract!state!
Figure!31.!Example!program!to!illustrate!!Fusy's!slicing!functionality!
Figure!32.!Verification!flow!supporting!multiple!crowd� sourced!tools!
Figure!33:!Example!of!a!Hasse!diagram!for!categorizing!candidate!invariants!���
Figure!34.!Hasse!diagram!of!relationships!among!sample!candidate!invariants��!�
Figure!35.!Faulty!code!that!processes!a!heartbeat!message!in!OpenSSL.!
Figure!36:!Distribution!of!data!points!for!payload!and!sizep.!
Figure!37.!Code!snippet!illustrating!the!vulnerability!in!BIND!
Figure!38.!Example!of!how!Chekofv!samples!data!for!invariant!learning.!
Figure!39.!Learning!invariants!from!sampled!data.!
Figure!40.!Example!of!a!decision!tree!produced!by!Binary,Fission.!
Figure!41.!Progress!of!crowd!towards!consensus!on!invariant!
Figure!42.!!Player!participation!in!Binary,Fission!–!midǦǦǦMay!to!midǦǦǦOctober!�2015��
Figure� 43.!� !� Binary,� Fission!� solutions!� submitted–midǦǦǦMay!� to!�midǦǦǦOctober!2015��
Figure!44.!Peer!review!screen!from!Xylem!
Figure!45.!Xylem!statement!on!Benefits!to!Minors!

79!

33!



LY

LIST OF TABLES 

Table!1.!Relationships!between!software!artifacts!and!IFF!road!network!features! 18!
Table!2.!Summary!of!BIND!source!code!analysis! 24!
Table!3.!Summary!of!While!loop!patterns!found!in!BIND.! 25!
Table!4:!Summary!of!For!loop!patterns!found!in!BIND.! 25!
Table!5.!Most!commonly[occuring!data!types!and!structs!in!BIND!While!and!For!loops! 25!
Table!6.!Insights!from!original!deployment!of!Xylem!and!their!application!in!updating!Xylem!and!designing!the!

new!Phase!Two!game! 41!
Table!7.!Analytical!results!for!four!Paparazzi!configurations! 65!
Table!8.!Results!of!modular!analysis!on!large!C!programs! 73!



PREFACE 
In early 2012, a multi-national research team was formed to undertake advanced research as part 
of DARPA's Crowd Sourced Formal Verification (CSFV) program. In our teaming strategy, we 
sought to assemble a creative ensemble of free spirits that integrated comprehensive skills in 
videogame design and development with practical verification tool builders and insightful 
theorists in software formal methods. CHEKOFV, the chosen name for our group, stands for 
Crowd-sourced Help with Emergent Knowledge for Optimized Formal Verification. The name 
also recalls that of Anton Chekhov, the Russian writer and physician who maintained a 
successful blend of his creative skills and scientific knowledge throughout his career.  
As we embarked upon the CHEKOFV adventure, we found ourselves paralleling the narrative 
experience of the players of Xylem, our first fully-functional game (Figure 1). We were 
beginning to explore distant and unfamiliar territory, searching together for exotic patterns and 
explanations, and seeking out innovative answers to constantly stimulating puzzles.  

Figure 1. The adventure begins 

Over the three years of CHEKOFV, we grew to more fully understand and deeply appreciate each 
other's disciplinary approaches and research methodologies. We profited significantly from the 
opportunity to learn from each other, as we jointly tackled the key challenges of this demanding 
program. We also benefited greatly from the experience of collaborating with our colleagues on 

1
Approved for Public Release; Distribution Unlimited



the other CSFV teams, as well as the sponsors and administrators of the CSFV program at 
DARPA and AFRL. And, in particular, our explorations were enhanced by the dedicated gaming 
enthusiasts who sought out our corner of cyberspace, and spent some valuable time 
accompanying us on our voyage of discovery. We are looking forward with anticipation to future 
research activities in this intriguing field, and we are confident that the core CHEKOFV tools and 
games will continue to be available for players and researchers alike, well beyond the end of the 
official CSFV program; for more information, see www.chekofv.net. 
The culmination of our formal collaboration is this Final Report, which documents our 
approaches, methods, and results, as seen through the specialized lenses of our respective 
professional disciplines. Like the verification games and tools themselves, this report is an 
integrated creation that merges contributions from all CHEKOFV–ians over the life of the project. 
In that sense, it forms the cumulative ensemble of all our endeavors.  

However, the responsibility for actually preparing the materials and editing the Report is a task 
unto itself, which fell to a focused band of devoted teammates at the end of the core CHEKOFV
project activity. We acknowledge in particular the following colleagues for their enthusiastic 
dedication to this task: Heather Logas, Daniel Fava, and Daniel Shapiro at UC Santa Cruz; 
Matthieu Lemerre and Julien Signoles at CEA Tech; and David Wilkins, Martin Schäf, and 
Jenny McNeill at SRI International.   

On a broader note, Figures 2 and 3 indicate the institutional affiliations of the primary CHEKOFV 
team members at the time of their principal participation in our project. As our work progressed, 
it helped to advance all our professional careers, and many of our colleagues have successfully 
transitioned to new adventures in new organizations. We wish them well in their new roles, and 
we look forward to further collaborative adventures and explorations in the future.  

John Murray, CHEKOFV Principal Investigator 
SRI International 
Menlo Park 
California.   
October 2015 

2
Approved for Public Release; Distribution Unlimited



Figure 3. BinaryFission credits 

Figure 2. Xylem credits 

3
Approved for Public Release; Distribution Unlimited



1. SUMMARY
This report describes research undertaken in the CHEKOFV (Crowd-sourced Help with Emergent 
Knowledge for Optimized Formal Verification) project, under $)5/�contract FA8750-12-
C-0225. The research was sponsored by the DARPA CSFV (Crowd-Sourced Formal 
Verification) program, and was carried out from July 2013 to October 2015. The CHEKOFV team 
was led by SRI International (SRI) and included, as partners, research teams in the Center for 
Games and Playable Media at the University of California Santa Cruz (UCSC) and at CEA Tech 
(Commissariat à l'énergie atomique et aux énergies alternatives) in France.  
1.1 The Problem 
Unreliable software presents major problems throughout industry and government. The direct 
costs associated with identifying and correcting bugs are enormous on their own, not to mention 
the related effects that faulty software have on critical systems in cybersecurity, military 
equipment, medical instruments, and other devices where safety is paramount.  

The discipline of formal program verification provides sophisticated techniques for assuring 
error-free software. The technology of formal verification advanced rapidly in recent years, but it 
is still dependent upon a limited pool of highly-trained professionals. The more automated 
techniques generate too many false alarms, which makes it infeasible to move beyond the 
verification of small modules of software. The underlying motivation for the CSFV program was 
to achieve both scale and precision in formal verification by leveraging human pattern 
recognition skills and insights.  
From the outset, the CHEKOFV team identified several interrelated challenges and unknowns that 
needed to be overcome in order to create an effective crowd-sourceable game space for use in 
this endeavor. Of particular concern was the difficulty of expressing the targeted source code in 
an easy and intuitive manner for non-experts to grasp and enjoy. An accompanying challenge 
was the program requirement that the target source code be represented in a form where the 
original code could not be easily reverse engineered. We also needed to address the problem of 
providing players with a natural instinctive way to manipulate and refine the initial assertions 
that are generated by automatic means. Related to this problem were the challenges in 
representing software behaviors and patterns that elude automatic identification, and eliciting 
players’ insights and observations based on their exploration of the game space.  
Furthermore, we wanted to provide some mechanisms that could take advantage of inter-player 
collaboration/competition, and the sharing of insights among the crowd. For example, we felt 
that such cooperative activity would become easier when players share a common behavioral 
view of the problem space. At the same time, they should also have the means to hone their own 
individual skills, and to develop techniques and craft tools that express their perceptions of the 
game world activity.  
Finally, we recognized the importance that players be properly rewarded for their in-game 
actions. The game world would need WR�incorporate an ability to trade, share, and/or exchange 
tools that will strengthen the mechanisms for structuring contests and cooperation among 
individuals and groups. An appropriate reward scheme would also recognize the time and effort 
expended by players in exploring challenges that may ultimately prove unsolvable.  

4
Approved for Public Release; Distribution Unlimited



1.2 CHEKOFV Workflow 
A high-level overview of the notional CHEKOFV workflow is shown in Figure 4. The core system 
is conceptually divided into two interlinked subsystems – the Verification Framework (VF), and 
the Game Subsystem (GS) – which work together to accept verification tasks from a human 
coordinator and deliver useful, engaging gameplay experiences to a suite of game applications.  

Figure 4. Nested iterative workflow processes for CHEKOFV 

The workflow through the system forms a nested series of iterative processes. At the top level, 
the software-engineer coordinator submits source files to VF for verification and receives 
updated/annotated versions back. This process is repeated until an optimal annotation state is 
reached, when the code is ready for compilation. At the middle level of iteration, VF manages 
the automatic-verification processes, identifies specific verification tasks for crowd sourcing, and 
passes these to GS. VF also handles the crowd-sourced results analysis and the player rewards 
process, and issues updated tasks to GS. In the innermost loop, the Game Subsystem generates 
multiple game instances from the tasks received and distributes them to the suite of crowd-
sourced games. The returned results for given code snippets may cause further instances to be 
generated in an iterative fashion. Upon completion, GS aggregates the task results and returns 
them to VF. A more detailed view of the architecture may be found in Figure 15 in Section 3.1. 

1.3 The Games 
In Phase One, the CHEKOFV team developed some initial prototype games to explore the general 
play space, and then homed in on a comprehensive design and development project for Xylem: 
The Code of Plants, our first fully functional game, which was initially released for the Apple 
iPad platform. The insights and lessons learned from the deployment of that game in Phase One 
led to the evolution of the follow-up game Binary Fission, which was deployed during Phase 
Two of CHEKOFV.  
Xylem: The Code of Plants is a casual game for players using mobile computing platforms that 
was intended to appeal to a non-traditional computer-gaming demographic. Set in 1921, the 

5
Approved for Public Release; Distribution Unlimited



Xylem narrative centers on a mysterious, newly discovered island. The player, in the role of an 
explorer and botanist, makes observations about fabulous new plant species by spotting patterns 
in their behavior. There are numerous levels of difficulty in these puzzles, ranging from simple, 
though exotic flowers, to very complex plant structures, all of which are previously unknown. 
The flowers and plants are generated from data about the software source code under verification, 
and the player's observations of the plant growth patterns become candidate invariants that 
describe the software's dynamic behavior.  
As it transpired, Xylem generally attracted a science-oriented audience, rather than the casual 
puzzle players, which was our original hope. Because the most prolific players of Xylem were 
people who were intrigued by the science aspect of the project, in Phase Two of CHEKOFV, we 
decided to take a very different tactic with our second offering.  
With BinaryFission, we focused on addressing the citizen scientist audience with a fun game that 
allowed multiple players to collaborate on a single verification problem. From the CSFV point of 
view, the goal in BinaryFission is to compose and assemble conjunctive and disjunctive 
invariants, because this process is difficult for automated systems to produce. The game is 
structured to offer players pools of previously-generated invariants to use as classifiers that 
separate sets of data values into good and bad subsets.  

1.4 Code Analysis and Verification Process 
The project relied heavily on the use of abstract interpretation and the learning of loop invariants 
in the verification process. The management of the tools and tasks for these purposes was 
handled by Frama-C, an open-source multi-platform verification framework that was developed 
by our team partner CEA-Tech. Frama-C was enhanced to support a dynamic interface with the 
Game Subsystem, and provided plug-in capabilities for several individual verification tools, as 
well as adding analysis components that merge the formal verification toolchain outputs with the 
crowd-sourced results returned by the games. All of these resources were specialized for 
verifying C language source code, which was at the core of our project.  

In the course of the project, we identified several important key techniques to generate progress 
metrics for software verification. In addition, we believe that Binary Fission clearly demonstrates 
the feasibility of crowd-sourced invariant discovery, and it illustrates the promise of crowd 
sourcing for other verification and classification tasks. This suggests a valid pathway for 
expanding the reach and practical application of verification technology in a variety of domains. 

6
Approved for Public Release; Distribution Unlimited



2. INTRODUCTION
2.1 Background 
Unreliable software presents major problems throughout industry and government. The direct 
costs associated with identifying and correcting bugs are enormous on their own, and the indirect 
cost to the economy has been estimated to run to tens of billions of dollars. Faulty software 
adversely impacts the safety and security of critical systems. 

Many instances of security properties can be verified by automated analysis methods based on a 
coarse abstraction of the program. The cases that are difficult to verify automatically are 
typically those that depend in some subtle way on the behavior of the software. For example, 
buffer sizes depend on the size and number of data values copied into the buffer. A 
miscalculation in the buffer size can lead to a buffer overflow that is easily exploitable through a 
bad input.  

Examples of common software vulnerabilities include buffer overflows, SQL injection, and 
incorrect authorization and authentication methods. To address problems like these, we need to 
answer questions about programs and program points such as: Has this user input been sanitized? 
Is this data value encrypted? Is this pointer value active? Is this buffer access within bounds? Is 
this resource access authorized? Static analysis tools can answer such questions, but they can 
miss errors and raise false alarms. These gaps can be plugged by annotating the code and using 
sophisticated formal verification tools. However, there is a limited pool of highly trained 
professionals who can use these tools and create these annotations, at considerable cost and 
effort. 

The goal of DARPA's Crowd Sourced Formal Verification (CSFV) program was to achieve 
economy, scale, and precision in formal verification by using games to leverage the intelligence 
of crowds. This is an extremely challenging problem. Crowd members are expected to contribute 
insights without access to the structure or behavior of the software. The crowd-sourced games 
must be simple and intuitive, while also being enjoyable and even addictive to play. There is also 
the key challenge of mapping complex verification problems to engaging and intellectually 
challenging puzzles. The resulting games must be easier for humans than for machines to solve. 
In particular, they must contribute breakthroughs that elude automated-verification techniques. 
Finally, there are the design and engineering challenges of building a game infrastructure that 
integrates verification technology with crowd participation.  

With these considerations in mind, we designed the initial CHEKOFV system, to be built around 
the architecture outlined in Figure 5. 

The CHEKOFV system includes two interlinked subsystems – the Verification Framework (VF) 
and the Game Subsystem (GS). The workflow through the system is summarized by the 
numbered steps in Figure 5. The VF accepts original source code and uses automated tools to 
annotate it where possible. A Game Abstraction Layer is used to transfer key code features to the 
GS, which generates numerous game instances. These are made available to players, who 
respond with results, which are then synthesized and used for further source code annotation. 
This updated code may then be recycled through the system or transferred to the CSFV 
optimized compiler upon completion.  

7
Approved for Public Release; Distribution Unlimited



Figure 5. CHEKOFV System Architecture 

In the remainder of this introductory section, we first discuss some characteristics of different 
techniques for software verification, and then describe Frama-C, our selected platform for the 
CHEKOFV Verification Framework [1]. Next, we provide an overview of abstract interpretation 
and its core role in identifying suitable program invariants. That is followed by our exploration 
of the casual game landscape, particularly gameplay concepts in the context of crowd-sourcing, 
which in turn sets the stage for our early design activities for the first CHEKOFV game, Xylem:The 
Code of Plants. 
2.2 Analysis of Software Verification Techniques 
A preliminary exploration of current software-verification techniques was undertaken in the 
early stages of CHEKOFV. They are summarized in the following list, and Figure 6 provides a 
visual comparison of their relative performance characteristics.  

• Proof construction based on Hoare Logics in systems such as Spec#, VCC, Verifast, Why,
and Frama-C using interactive proof checkers such as Coq, HOL, Isabelle, and PVS, and
automated SMT (Satisfiability Modulo Theories) solvers such as Alt-Ergo, Yices and Z3.

• Software Model Checking tools such as SPIN, JPF, MOPS, and CBMC that explore a
limited portion of the state space.

• Exploration tools like Alloy that examine software behavior on bounded configurations.

• Lightweight static analysis methods like Uno, FindBugs, Coverity, CodeSurfer, ITS4, JIF,
Klocworks, and Splint that examine control and data flows.

8
Approved for Public Release; Distribution Unlimited



• Heavyweight static analysis methods based on abstract interpretation such as Astree,
Polyspace, and CodeContracts where program properties are constructed as fixpoints on
an abstract lattice. Such techniques have been used on the A340 flight control software.

• Dynamic analysis techniques such as Daikon that filter out invalid putative invariants,
and various approaches for test generation (SAL-ATG, DART, SAGE, and PEX) and
runtime verification.

• Predicate abstraction methods underlying SLAM and Blast that construct invariants by
considering the behavior of the program on some chosen predicates.

Figure 6. Predicted Performance for the CHEKOFV System 
(C1 and C2) compared to other verification techniques. 

Figure 6 depicts the relative performance trade-offs for different verification techniques on the 
scales of cost, code space, and precision. For example, theorem proving (TP) offers high 
precision on modest code sizes, but a high cost. In contrast, dynamic analysis (DA) provides 
low-cost coverage of larger code bases, but sacrifices precision in the process.  
For CHEKOFV Phase One, the optimal verification strategy centered on building upon 
heavyweight static analysis and using crowd sourcing and abstract interpretation to increase 
precision, as indicated by performance bar C1 in Figure 6. In Phase Two, the plan was then to 
drive up the code coverage capability, as shown by performance bar C2, which reflected the 
CSFV program goals of transitioning from BIND (~650K lines of code) to the Linux kernel 
(~18M lines of code).  

9
Approved for Public Release; Distribution Unlimited



2.3 Frama-C Verification Framework 
The key design aspect behind the CHEKOFV Verification Framework was to provide an integrated 
workflow coordinator that managed the verification tasks of a suite of automated FV toolchains. 
For this purpose, we leveraged Frama-C [2] , an open-source multi-platform verification 
framework, which was developed by CHEKOFV team partner CEA. Frama-C was enhanced to 
support dynamic, two-way interactions with the CHEKOFV server platform, as well as creating 
analysis components that combined the toolchain outputs with the crowd-sourced results.  
As seen in Figure 7, Frama-C already provided plug-in capabilities for several individual 
verification tools, including Yices, SAL, etc. We adapted the interfaces between Frama-C and 
these tools, to support a fully-automated, iterative verification process. All of these resources 
were specialized for verifying C language source code.  

Figure 7. Overall structure of Frama-C capabilities and plug-ins 

2.4 Abstract Interpretation and Machine Learning 
Abstract interpretation [3] is a powerful technique for program verification. Tools like Astrée [4] 
and Frama-C [1] have demonstrated not only that abstract interpretation can prove the absence 
of run-time errors in real-world C programs, but also that it is commercially viable to do so.  

To verify a given program, abstract interpretation approximates the semantics of this program 
based on monotonic functions. The analysis symbolically executes this program under analysis, 
keeping a set of possible states at each program point. If an error is not reachable in this 
abstraction, we have a proof that this error is also not reachable in the original program.  

10
Approved for Public Release; Distribution Unlimited



Unfortunately, even if these tools are fully automated, it does not mean that using them is simple. 
Sometimes, in particular when analyzing looping control-flow, abstract interpretation loses 
precision and the set representing the possible states of the analyzed program becomes too 
imprecise. This can result in a large number of false alarms, up to a point where the only option 
is to abort the analysis. In these cases, a verification engineer needs to step in and provide hints 
in the form of code annotations or custom parameterizations to help the analysis regain precision. 
For large programs, writing these annotations can be difficult and time consuming. The process 
tends to be incremental because an annotation that was used to drive the analysis forward may be 
insufficient a few statements later. In other words, previous annotations, which were considered 
sufficient, may have to be revised because they were either too weak or too strong to continue 
the analysis at a later point in the program. This leads to a labor-intensive process that is also 
costly because, to provide useful annotations, the analyst not only has to understand the analyzed 
code, but also the details of the abstraction used by the verification engine.  
To lower the cost of applying abstract interpretation, we have seen a new trend of using machine 
learning to identify likely invariants. The idea is to collect two sets of concrete program states 
that are either part of a successful execution (good states) or failing executions (bad states), and 
use machine learning to find a classifier that separates those sets. Approaches such as Daikon [5], 
ICE [6], and work by Sharma et al. [7][8][9], have successfully demonstrated that machine 
learning can be used to learn likely invariants. This differentiates it from widening, which – 
although commonly used to generalize program behavior by expanding potential bounds – does 
not provide the generalization guarantees that machine learning offers. 
However, there are limitations to using machine learning for finding likely invariants. For 
example, collecting good states and bad states is expensive (if it were easy to enumerate them, 
we would not need abstraction) and thus the machine learner has to operate on a small data set, 
which in turn increases the risk of over-fitting. Machine learners also have a tendency to produce 
large and clumsy invariants that are very difficult for humans to interpret. In addition, machine 
learners operate on a hypothesis space which allows them to express certain kinds of knowledge 
and empowers them with the ability to generalize. However, there can be mismatches in the type 
of representation strength of a classifier and the domain of the program under analysis.  
The use of crowd-sourcing in CHEKOFV was intended to complement these machine-learning-
based approaches to invariant discovery. A major benefit over machine learning is the fact that 
invariants are not limited by a particular kernel function or hypothesis space. Instead, we 
anticipated that a very diverse set of solutions could be obtained from different players. Also, we 
considered it likely that humans would tend to produce invariants that are readable and, given 
our natural limitations handling large amounts of data, we felt that humans would be less likely 
to produce a solution that over-fits.  

The obvious problem of crowd sourcing is that it has to run for some time (depending on the 
number of active players, this may be a long time) before a reasonable set of solutions becomes 
available. However, compared to the several man-months of effort of verifying a real system, 
this may still be a cheap preprocessing step. Another potential problem is that human intuition 
breaks at high dimensions, and the dimensionality of the data to be classified depends on the 
number of variables in scope at a particular program point. This is why, when designing a 
verification game, the choices of visualization and data representation are important. 

11
Approved for Public Release; Distribution Unlimited



2.5 Related Work on Abstract Interpretation 
The problem of finding suitable program invariants is a central part of formal verification 
research. Striking the balance between an abstraction that is sufficiently precise to prove a 
property and sufficiently abstract to reason about is what makes program analysis scalable. In 
static analysis, a variety of techniques exist to infer program invariants, such as CEGAR [10], 
Craig interpolation [11], or logical abduction [12]. However, these approaches have the inherent 
limitation that they rely on information generated from the source code of the analyzed program. 
If the needed invariant is a relation between variables that cannot be inferred from the source 
code, these techniques must fall back on heuristics or fail to compute an invariant. 
The idea of learning likely invariants from program states goes back to Daikon [5]. Daikon 
learns likely invariants from a given set of (good) program states by working with a fixed set of 
grammar patterns. Numerous approaches have used Daikon; for example, iDiscovery [13] uses 
symbolic execution to improve on Daikon's invariants. Similar to our approach, it inserts the 
learned invariants back in the code under analysis and then uses symbolic execution to confirm 
or break these candidate invariants. This process generates new states that can be fed to Daikon 
and can be iterated until either an inductive invariant is found, or symbolic execution fails to 
generate new states. 
Sharma et al [8] formulate the problem of extrapolation in static analysis as a classification 
problem in machine learning. They also use good and bad states and a greedy set cover 
algorithm to obtain loop invariants. In a follow up work, a similar algorithm to detect likely 
invariants using randomized search is described [7]. While our approach is similar in the sense 
that we learn invariants from good and bad examples, our application is different. Rather than 
finding accurate loop invariants, we are interested in finding human-readable annotations using 
crowd sourcing that prevent abstract interpretation from losing precision.  

The architecture of our approach strongly resembles the decision-tree learning-based approach of 
DTInv [14]. In fact, the authors of that paper provided their implementation, which we used to 
test our approach. The key difference between the two techniques is that CHEKOFV uses 
gamification instead of machine learning to find invariants. 

Another popular approach for learning likely invariants is the ICE-learning framework [6]. 
Similar to Daikon, ICE-based algorithms search for invariants by iterating through a set of 
templates. Unlike Daikon, ICE does not discard likely invariants that are inductive. Instead, it 
checks a set of implications to decide if the counterexample is a new good or bad state.  

Predicate abstraction [15] based on abstract interpretation has also been used to learn 
universally-quantified loop invariants [16] and was implemented in ESC-Java [17]. This 
approach may require manual annotations to infer smart invariants. It is a 100% correct 
technique but at the price of precision. Counterexample driven refinement has been used to 
automatically refine predicate abstractions and reduce false errors [18]. Fixpoint-based 
approaches have also been studied [2] however they do not explicitly generate bad states, unlike 
the work we describe here. 
An approach to gamify type checking has been presented by Dietl [19], which is based on a 
different usage of crowd-sourcing in the context of software verification. Their approach uses 
crowd-sourcing to assist an extended type checker to propagate type constraints in a system that 
does not yet typecheck. While targeting a different domain than CHEKOFV, they also use crowd-

12
Approved for Public Release; Distribution Unlimited



sourcing in a domain where an automatic solution could be computed but where this solution is 
unlikely to be adequately interpretable by human users. 

2.6 Initial Exploration of Game Space 
The key game-design challenge for CSFV is to craft a crowd-sourceable experience that helps 
elicit useful program annotations, especially loop invariants, from non-expert players in an 
intuitive and enjoyable manner. Most popular game genres cannot simply be adapted to work for 
this problem. Role-playing games (RPGs) or fast-reflex games, such as first-person shooters 
(FPSs), do not readily lend themselves to this core game-design challenge. 

We found initial inspiration for invariant finding from puzzle games, an existing genre that can 
provoke thoughtful slow-paced exploration and play, in move-by-move casual games. Puzzle 
games also often present problems that, if they were to be solved by computer, would have high 
computational complexity. However, despite these similarities, most puzzle games are a poor 
match for the invariant-finding problem.  
Some puzzle games, like Sudoku, are easier for computers than humans, however, the basic issue 
is that in most puzzle games, constraints are hard wired, and given to the player. Invariant 
finding is the opposite problem: the constraints are initially unknown, and the player must 
determine them via inductive reasoning.  
Computers are not good at inductive reasoning, because rules must be generated out of thin air. 
Inductive reasoning is challenging for humans too, but we appear to be better at it than 
computers. Given a sequence of data values, our game players must determine rules or 
constraints that accurately describe the data values.  
During our initial game exploration activity, we identified several existing games that bore some 
similarity to the activities in our project. The closest effort was Pex4Fun, developed by 
Microsoft Research (pex4fun.com). In Pex4Fun, the player is presented with an incomplete 
snippet of C# source code in an editor window, and is asked to make it consistent with a hidden 
implementation. The player can invoke an automated white-box test case generator for the code 
snippet, and obtains a behavior comparison with the hidden implementation. The player then 
iteratively writes C# source code and checks the output until the implementation is correct.  

This game has multiple drawbacks: it requires players to be able to read and write source code, 
and have a basic understanding of black box testing. It also has a limited reward system, and 
limited connections to social media sites. Despite these drawbacks, the game had been played 
over 775,000 times at the time of our preliminary exploration, indicating that there is an audience 
even for explicit programming games. However, the CHEKOFV games could not require 
knowledge of programming or expose the underlying source code. We also needed to provide an 
interface that looked and felt like a game, not a programming environment. 
The genre of logic induction games were similar in structure to the vision for CHEKOFV games. 
The best-known examples of this genre are Eleusis, Mao, Zendo, and Jewels in the Sand. In these 
games, a human game master picks a rule (concerning the arrangement of cards, plastic triangles, 
or plastic jewels), and then players must propose their own arrangements to try and determine the 
rule. The game master gives match/no match feedback to the players. These examples are 
primarily table-top games, rather than computer-driven ones. This is easier, because natural 
language can be used to give feedback to players, and to describe the relationship among items. 
CHEKOFV games are similar to logic induction games in that they require the player to find a 

13
Approved for Public Release; Distribution Unlimited



hidden rule, but differ because players use a novel visual language to specify the hidden 
condition. Furthermore, the hidden rule is determined by software code, not a human game 
master. 
The successful science crowd-sourcing game FoldIt (fold.it) harnesses human game-playing 
ability to develop improved protein-folding schemes, and even the design of completely new 
proteins. FoldIt adds human intuition into the physical interactions of parts of a molecule, and 
hence involves physical models and reasoning. The data space is uniform, consisting of a wide 
range of combinations of a known set of atoms. In contrast, our proposed games involve players 
determining logical constraints among a much wider set of potential data values. Our games are 
similar to FoldIt in that we expect better results from a large number of human game players 
than from computational methods. 
Some of the games used for early inspiration during the preliminary CHEKOFV design activities 
are illustrated in Figure 8 (images taken from Wikipedia); (left column: Words With Friends, 
Zendo (see: www.koryheath.com), Pex4Fun (see: http://pexforfun.com/), Jewels In The Sand 
(see: pweb.jps.net/~sangreal/jits.htm), and Marbledrop (see: 
https://en.wikipedia.org/wiki/Marble_Drop). 

Other disciplines provided insight for our invariant finding games. The field of visual 
programming languages is one that can provide ideas for how to create visual languages for 
expressing logical constraints among variable values. The field of algorithm animation can 
provide insight into the thorny problems of how to represent complex data structures. 
Psychology has explored human performance on inductive reasoning tasks using multiple 
theories that explain how people approach the challenging task of finding rules from sequences 
of data. Insights from this literature, in particular the Wason 2-4-6 task, informed game design 
decisions and assessment of game players [20]. 

2.7 Preliminary Game Concepts 
This initial exploration led us to a game concept – first called CodeBreaker and then renamed 
CyphrSeekr – that was an instance of an inductive puzzle game (like Eleusis, Patterns II, and 
Zendo) where players must guess a secret rule from instances.  

Figure 9 illustrates some of the preliminary concept mockups for the design of CodeBreaker, and 
Figure 10 shows the corresponding interaction interface as implemented for demonstration 
purposed. This exploratory game was renamed CyphrSeekr, with an accompanying storyline as 
follows:  

A newly constructed radio telescope has been receiving perplexing data sequences 
from various points in deep space. The data is intriguing: when interpreted 
numerically, it seems that clear, logical patterns emerge. Not language, as we 
normally think of it, but perhaps a language of numerical relationships. We do not 
know for sure, and that is why we need your help. The data is presented to you as a 
series of rows. Try to find the pattern that is common to all of these rows.  

Here, the player would observe a sequence of message states generated by successive executions 
of a program loop and constructs a formula from a given set of building blocks that best captured 
the relationships between the values in each state. The game could be played solo against a range 
of execution traces, or in multi-player tournaments that involve competition and/or cooperation.  

See Appendix 1 for more information on this early design concept. 

14
Approved for Public Release; Distribution Unlimited



Figure 8. Early inspirations for CHEKOFV game design 

15
Approved for Public Release; Distribution Unlimited



Figure 9. Early concept mockups for Codebreaker/CyphrSeekr 

Figure 10. Initial CyphrSeekr demonstration 

16
Approved for Public Release; Distribution Unlimited



Figure 11 illustrates the proposed concept for collaborative/competitive play involving two 
participants. Starting with the same challenge puzzle, each player builds a candidate invariant 
which is shared with the other(s) at the end of Round One. For each successive round, the 
players use this information to build refinements and/or counterexamples, until no further 
improvements are feasible.  

Figure 11. Concept for collaborative/competitive play with two participants 

Two additional game-design concepts were also considered during this initial CHEKOFV project 
activity. One of these, tentatively titled Invariants vs. Zombies, was inspired by Plants vs. 
Zombies (www.popcap.com/all-games/plants-vs-zombies), a tower-defense style game where 
hordes of zombies approach the player’s tower along parallel lanes that are defended by plants 
having varying offensive and defensive capabilities. For Invariants vs. Zombies, the player 
creates invariant conditions to defend against variable-eating zombies, as shown in Figure 12.  

Each variable would run in its own lane, together with a representation of its current value, and 
the player’s goal would be to specify an animated crazy machine (the invariant constraint) that is 
true across all current and past variable values. In contrast with a more casual puzzle-oriented 

Figure 12. Concept for Invariants vs. Zombies 

17
Approved for Public Release; Distribution Unlimited



experience, this game would be single-player and faster-paced, with players potentially 
generating more invariant conditions during a play session. While the design of CyphrSeekr was 
oriented toward a slower, more thoughtful style of play, we anticipated that Invariants vs 
Zombies would support more rapid invariant generation on easy and medium complexity 
software loops. 
The second alternate game concept under consideration in the early stages was another 
collaborative tower-defense game that involved several players cooperatively guarding gates on 
a road network. Their job was to challenge travelers who arrive and identify them as friends, foes, 
or neutrals, based on carefully crafted numerical questions about their identification (ID) tags. 
Tentatively called IFF (Identification Friend or Foe; Invariants For Free), the idea was that 
collaborative question building in games of this form could be used to cooperatively define 
software preconditions, post-conditions, joins, loop invariants, and function summaries. Table 1 
demonstrates how the key features of an IFF road network would represent the primary artifacts 
of the software under verification.  

Table 1. Relationships between software artifacts and IFF road network features 

Game%feature%in!Invariants!For!Free!(IFF)! Corresponding%software%artifact!

Road!network! control!flow!graph!

Guards! control!points!

ID!Tags! variable!values!

Questions! assertions!

Friends! legitimate!inputs!

Foes! generated!values!violating!assertion;!

Neutrals! generated!value!not!violating!assertion!

Change!of!ID!Tags! executions!

2.8 Concept Transition to Xylem: The Code of Plants 
A key challenge underlying each of the early design concepts was the difficulty of visually 
representing variable values, data structures, and other artifacts of software. For example, small 
values of integer variables can be portrayed using repeated images of some in-game item; thus, a 
variable value of five can be depicted on screen by five animated frogs, flaming swords, etc. But 
what if a variable value is in the thousands? Further, lists are pervasive in software and raise 
even more representational challenges because they need to represent both individual element 
values, as well as the list as a whole. This implies that the visual theme for depicting the list 
needs to be consistent with that of portraying the individual list elements. 

It became clear that the need to present many different types of data structures meant that the 
game would require a wide expressive range. With a broad set of supported data structures, the 
game could cover a wide range of actual program loops in the game, thus increasing the value of 
the crowd-sourcing approach. This created the challenge of designing a set of data structure 
visualizations and control flow depictions that held together with a consistent narrative – that of 
the game. 

18
Approved for Public Release; Distribution Unlimited



A key requirement for the overall CSFV program was that players could not have direct access to 
any of the source code of the target software, which included depicting even small snippets of 
actual source code. Therefore, the visualization must not only show the game data in a pleasing 
and consistent manner but also must effectively obfuscate the code such that members of the 
public could not reconstruct any part of the software under verification. 
A further concern in our concept exploration was driven by the desire to design a game that 
appealed to a large audience, of the sort that might enjoy playing casual puzzle-type games. 
While our early design concepts were entirely numbers based, the profiles of our potential 
audience members exposed a discomfort with numbers and math. These various considerations 
led us to consider the plant kingdom as our core game theme – see Figure 13.  

Flowers and plants are a familiar part of most peoples’ experience in one way or another, and can 
be interpreted as friendly and decorative to many of us. Selecting this domain enabled us to 
develop a screen design that would support the necessary verification work while at the same 
time creating a narrative space that would be appealing and non-threatening to a wide variety of 
players. The plant kingdom offered us a coherent visual metaphor that would apply across 
multiple data structure types, control flow features, and other software artifacts, while at the 
same time abstracting out or obfuscating the numerical aspect of the player's experience.  
Importantly, our intended audience was not anticipated to be overly computer science literate, 
and this approach enabled us to present complex software-specific information in a way that is 

Figure 13. Concept sketch during early exploration of plant domain as a theme 

19
Approved for Public Release; Distribution Unlimited



understandable to users who may lack computer science domain knowledge. We also needed to 
make interaction with intricate software information motivating and clear, without having to 
introduce specialized notation and terminology. And, in keeping with the expectations of casual 
game players, this approach could support a consistent fiction within the game narrative.  

Importantly, our intended audience was not anticipated to be overly computer science literate, In 
initial user tests, players could easily distinguish between different plant features as representing 
different variables. Using plant features that change at different stages of growth also made 
enough sense to players that it eliminated the need to explain too much backstory and in-game 
behavior before they could be productive. 
Thus was born Xylem: The Code of Plants. 

20
Approved for Public Release; Distribution Unlimited



3. METHODS, ASSUMPTIONS, AND PROCEDURES
In this section, we first discuss the overall conceptual architecture for CHEKOFV. We then 
summarize an early analysis of the BIND source code library, and describe our planned 
player/problem ranking system. This is followed by the Xylem design process, the insights 
learned from the Phase One deployment of that game, and the evolution of the follow-up game 
Binary Fission, which was deployed in Phase Two of CHEKOFV. Next, we examine the use of 
abstract interpretation and invariant learning in the verification process. In particular, we present 
the method of integration of our tools into the crowd-sourcing environment, both for generating 
game level instances from initial source code and for checking the player-returned results. We 
end with a brief description of the techniques used to generate progress metrics for software 
verification. Figure 14 illustrates the introductory screen for both Xylem and BinaryFission. 

Figure 14. Introductory screens for the primary CHEKOFV Phase One and Two games 

21
Approved for Public Release; Distribution Unlimited



3.1 Overview of the CHEKOFV system 
The initial conceptual architecture and flow sequence for CHEKOFV is shown in Figure 15. The 
chart illustrates the proposed interconnections between the major internal components of 
CHEKOFV, as well as the planned system interfaces to other CSFV program elements, such as the 
TopCoder support platform, as well as to external users and facilities.  

Here is a brief walk-through of the process flow: 
1. The software developer submits code project into SVN. TopCoder notifies CHEKOFV (as well

as other gaming systems) of the new code project.
2. CHEKOFV Facilitate Server (CFS) initiates a preliminary verification session by invoking

Preprocessing Tool suite. Developer-provided annotations are checked for validity, and
initial vulnerabilities are identified.

3. The Frama-C based Verification Framework analyzes source code with different plugin
analyzers. The FUSY module splits the project into multiple sub-problems and generates loop
instances for crowd-sourcing verification.

4. Sub-problems are compared against Pattern DB for possible equivalence matches. If no
match, category classification and initial difficulty level are generated for each sub-problem.

5. CFS inserts new sub-problem and its instances into the Game/Problem DB.
6. Game Server generates specific games for each instance and deploys to Xylem clients.
7. Player registers with TC web front-end, downloads Xylem app, and requests game instance.
8. Game instances can also be made available to robot-players or third-party games as needed.
9. When Player finishes a game, Game Server first performs a simple check and if the check

passes, it then notifies CFS of a new candidate invariant, and potentially a player-specified
difficulty level.

10. Player is notified of initial score, and optionally updates FB/Twitter, blogs, forums, etc.
11. Incoming candidate invariants from gameplay are checked for equivalence and validated.
12. Verification Framework generates metrics determining the quality of the solution (candidate

invariant) or a set of counter examples.
13. Metrics are notified to CHEKOFV Ranking System (CRS), which constantly computes the

overall ranking of each player and game difficulty based on current game and player data.
14. Updated CRS rankings are used to revise Player DB, for possible player award notifications,

leaderboard updates, etc.
15. All valid candidate invariants generated by the Game System are merged and processed with

other candidates of the same sub-problem.
16. Updated ratings of all solutions of the same sub-problem passed to CFS for DB updating.
17. Applying behavioral analytics to in-game player activity logs provides additional insights

into potential invariant-generation processes and extends the assessment of player expertise.
18. Current results of all sub-problems are combined as partial annotations to the original source

code submitted by the developer, and passed back to SVN.
19. Flow analysis results and Preprocessing Tools outputs are merged to identify CWE coverage

levels, which are reported back to the developer.

22
Approved for Public Release; Distribution Unlimited



Fi
gu

re
 1

5.
 O

ve
ra

ll 
C

H
E

K
O

FV
 c

on
ce

pt
ua

l a
rc

hi
te

ct
ur

e 

23
Approved for Public Release; Distribution Unlimited



3.2 BIND Library Analysis 
Early in the CHEKOFV project, we undertook an analysis of BIND source code. Specifically, we 
were interested in determining the number and range of loop types, because our project goal was 
to identify candidate loop invariants for this code base. Table 2 summarizes our overall findings. 
Software loops are not all created equal; they are differentiated by features such as complex 
conditionals, numbers of internal function/method calls, exit conditions, etc. We hypothesized 
that by examining a large enough sample from BIND, we would discover logical clusterings 
containing loops with similar properties; i.e., markers. The sample needed to be small enough to 
be conveniently analyzed, yet large enough to help us detect meaningful patterns, e.g., control 
breaks, early exit, continuation with next iteration, etc.  

Table 2. Summary of BIND source code analysis 

Directory% While%Loops% For%Loops% Total%Loops%

lib/DNS! 1659! 651! 2310!

lib/bind9! 3! 43! 46!

lib/export! 18! 32! 50!

lib/irs! 30! 22! 52!

lib/isc! 304! 158! 462!

lib/isccc! 8! 14! 22!

lib/iscfg! 185! 31! 216!

lib/lwres! 83! 60! 143!

lib/tests! 13! 0! 13!

Totals! 2303! 1011! 3314!

Table 3 summarizes the total number of loop types within BIND/lib. Of these, we randomly 
selected 100 loops; this sample contained a mix of while and for loops. The following markers 
were identified, to enable reasoning about  the loops' internals:  

○ Update (U). e.g., result = ISC_SUCCESS
○ Control Break (CB). e.g., if(condition){ UPDATE }

○ Early Exit (EE). e.g., break, return DATA, goto LABEL.
○ Continue with next Iteration (CN). e.g., continue

○ Inner Loops (IN).
○ ANY (A).

This analysis showed seven classes of While loops and six classes of For loops in BIND/lib; see 
Tables 3 and 4. 

24
Approved for Public Release; Distribution Unlimited



Table 3. Summary of While loop patterns found in BIND. 

Class! Pattern! Count!

W1! (U,!CB)% 9!

W2! (U,!CB,!U)! 4!

W3! (CB,!U)! 4!

W4! (U)! 9!

W5! (U,!IL,!U)! 5!

W6! (U,!CB,!EE,!IL,!U|EE)! 5!

W7! (U|A,EE|CN,!CB|U|A)! 4%

Table 4: Summary of For loop patterns found in BIND. 

Class% Pattern% Count%

F1! (U,!CB)! 18!

F2! (U,!EE)! 7!

F3! (U)! 10!

F4! (A,!INNER_LOOP,!A)! 7!

F5! (U,!CN,!CB,!U,!CB)! 4!

F6! (U,!EE,!CN,!U)! 3!

Additional clustering can be found by using shared data types, as noted in Table 5. Further 
details of this analysis may be found in Appendix 2.  
Table 5. Most commonly-occurring data types and structures in BIND While and For loops 

While!loop!classes! For!loop!classes!

Commonly=occurring%
data%types%

Commonly=occurring%
data%structures!

Commonly=occurring%
data%types!

Commonly=occurring%
data%structures!

• int
• isc_boolean_t
• unsigned!int
• NULL
• char!*buffer

• isc_region
• isc_mem

• unsigned!int
• NULL
• char!*buffer
• int
• isc_uint16_t

• cfg_obj
• isc_log
• dns_acache

25
Approved for Public Release; Distribution Unlimited



3.3 CHEKOFV Ranking Subsystem (CRS) 
Early in the project, a preliminary reputation-
management subsystem was implemented, to 
support the ranking of players based in part on the 
quality of their proposed solutions. It involved 
building a bipartite graph G=(U,V,E) that linked 
problems U, players V, and solutions E.  

The scores are iteratively updated using link analysis 
and a weighted HITS-based algorithm on the graph 
[21]. HITS algorithms formulate the notion of 
authority or reputation, and are based on the 
relationships between sets of relevant authoritative 
nodes and the hub nodes that join them together in 
the link structure. The formulation has connections 
to the eigenvectors of certain matrices associated 
with the link graph, and these connections in turn 
motivate additional heuristics for link-based analysis. 

The application of this approach to CRS is as 
follows: in Figure 16 (a), the graph edges are 
initialized as players are assigned problems, then (b) 
the edges are labeled with preliminary scores for the 
solutions generated. Then (c), the problems are 
separately indexed by difficulty, such as the number 
or range of software variables involved, and (d) an 
assessment of player quality is achieved.  

A variety of APIs are provided for managing the 
CRS. These included adding and updating problem 
information, and player data including the player's 
level in the game, their assessed ability, how long 
they have existed, etc. Solution data to be transferred 
included: correctness of solution, duration of 
solution attempt, player_gave_up, start and end 
times when game was played, the game platform 
used, etc.  
In the long term, and with sufficient data, the CRS 
was expected to help achieve a consensus on player 
quality, which would allow more selective 
challenges to be offered to those players. Although 
CRS was not fully deployed for CHEKOFV, we 
believe that a weighted HITS-based approach can 
provide a useful way to manage a variety of crowd-
sourced tasks and projects. 
The full CRS API may be found in Appendix 3. 

(a)

(b)

 (c)

(d) 

Figure 16.  
CHEKOFV Ranking 

Subsystem 

26
Approved for Public Release; Distribution Unlimited



3.4 Phase One: Xylem: the Code of Plants 
3.4.1 Initial Game-Design Activity. As noted in Section 1, the design direction for the first 
CHEKOFV game was to abstract away as much numerical information as possible, with the goal 
of developing a successful “casual” puzzle experience. The game should be untimed, easily 
picked up and put down again, portable and versatile, and the overall aesthetic should support an 
intriguing but relaxing atmosphere. The kingdom of plants fit these criteria; plants are 
commonplace in everyday experience, and as living things, they have a certain universal appeal 
as evidenced by Figure 17. 

From a source-code representation point of 
view, we noted that plants grow and change 
over time, as does the data produced by loops. 
Using features of a plant (number of flowers, 
number of petals on each flower, number of 
leaves, etc.) as variables would allow players to 
observe a pronounced visual change as they 
moved from iteration to iteration in the loop.  
The plant kingdom is also startlingly diverse – 
a little research turned up plant structures that 
would map quite easily to different code data 
structures. Integers can be represented by the 
number of flowers on the plant, roots with 
nodules can be used to represent arrays, and 
trees map directly onto a plant’s structure. 
Plants also provide the opportunity to build a 
story and gameworld around them in a richer 
way than boxes and arrows. 
Our product was a niche game, but our goal 
was to create what we called a “low niche” 
experience. That is, a game that was not 
exactly casual, but did appeal to a casual-type 
audience that is comfortable with some level of 
basic math. We wanted to create a safe,
comfortable space for math-puzzle play that 

would be accessible to as wide an audience as possible. As with crossword puzzles or Sudoku, 
we envisioned a non-stressful brain-exercising experience done while relaxing in a comfortable 
chair. An unwinding activity for someone who likes to stimulate their brain. This direction set 
the stage for nearly all of our design decisions.  

A critical task in the early design was to figure out just who the audience would be for this game. 
We created several fictional user profiles or "personae" [22], each with their own demographics, 
game playing habits, and indications of what they would enjoy about our game. These fictional 
audience members (see Figure 18) became our guideposts in the early stages of designing Xylem. 

Figure 17. Expressive diversity in plants 

27
Approved for Public Release; Distribution Unlimited



Figure 18. Fictional personae used to guide early Xylem design 

28
Approved for Public Release; Distribution Unlimited



To attract and retain our identified audience, we developed a rich narrative backstory in the game. 
This narrative framing was designed to attract players who might not otherwise find raw puzzle 
games appealing, as it evoked a connection to their experience of an engaging storyline. It thus 
needed broad appeal without too many complicated narrative trappings that would make the 
fiction harder to penetrate. An undercurrent of mystery and intrigue was woven into the game to 
create an additional sense of compulsion to the game while supporting the core gameplay. 
Given the nature of the gameplay (examining and stating observations of plants) it made sense 
that the character would be a botanist of some kind. The game’s procedurally generated flowers 
would not specifically map to existing plant species and discovering new things would be more 
interesting than examining existing things. Thus, the player's task would be discovering new 
plant species that had never been seen before. But still unanswered was the setting of the game. 
Should it take place in space on a newly-discovered planet? An alternative Victorian steampunk 
world? A Victorian steampunk world on Mars? Alien plant species invading Earth? 

All of these options (and more) were examined but found lacking for various reasons. Finally we 
hit on the idea of setting the game in the early 1920s, on a mysterious, newly-discovered island 
that has been named Miraflora. This time period was an important one for exploration in the 
world, and at the same time the public’s imagination was full of pulp adventure and lost lands. 
The game’s story of botanists flocking to a newly discovered island fit with the themes of the 
time period well. At the same time, this fictional framing did not require too much backstory for 
players to potentially get mired in and because the theme was not overtly science fiction or 
fantasy would appeal to a much broader audience. Figures 19 and 20 illustrate some of the 
narrative art assets used in Xylem.  

Figure 19. Supporting introductory narrative for Xylem 

29
Approved for Public Release; Distribution Unlimited



Figure 20. Narrative art assets in Xylem 

30
Approved for Public Release; Distribution Unlimited


